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The charge distribution and electromagnetic field in a rotating conductor with a 
net electric charge under stationary conditions are described by Schiffs equa- 
tions of electrodynamics in a rotating reference frame. The existence of a spatial 
charge distribution in a conductor at rest in a rotating reference frame is 
demonstrated. 

1. INTRODUCTION 

The covariant equations of electrodynamics do not uniquely determine 
the three-vector formulation of the electromagnetic equations in an arbi- 
trary reference frame. Particularly there exist a large number of different 
three-vector formulations of electrodynamics in a rotating reference frame 
(Schiff, 1939; Ise and Uretsky, 1958; Webster, 1963; Irvine, 1964; Modesitt, 
1970; Mo, 1970; Bow, 1972, Webster and Whitten, 1973; Landau and 
Lifshitz, 1975; Corum, 1980). But there are surprisingly few applications of 
these equations. The main applications have been to the cases of rotating 
charged shells with cylindrical or spherical symmetry, (Ise and Uretsky, 
1958; Corum, 1980) and to different versions of the Sagnac effect (Heer, 
1964; Yildiz and Tang, 1966, Post, 1967; Anderson and Ryon, 1969; Volkov 
and Kiselev, 1970). 

In this paper I will consider Schiff's equations (Schiff, 1939). Webster 
and Whitten (1973) have discussed these equations, and write that their use 
is often more difficult than describing a rotating object by the ordinary 
Maxwell's equations, referred to an inertial reference frame. In fact Schiff 
has told these authors that he regarded as the chief value of his work, the 
warning it should give anyone to avoid the use of rotating coordinate axes. 
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4 4 2  G r o n  

I describe here an isolated, massive, charged, rotating, cylindrical 
conductor from its rotating rest frame, R, and then transform the descrip- 
tion to the inertial rest frame of its axis, I. In this application the use of 
Schiff's equations is even simpler than describing the conductor directly 
from I by use of the ordinary Maxwell's equations (Gron and Voyenli, 
1983). 

2. SCHIFF'S EQUATIONS 

The covariant formulation of Maxwell's equations is 

G . o  + e,,o,r + For,  = 0 (1) 

[ ( -  g) ' / 2Fr~ ' ]  ,,, = ( -  g ) ' / 2 J  r (2) 

where F ro are the components of the electromagnetic field tensor, j r  of the 
four-current, and g is the determinant of the metrical tensor. 

Let R be rotating relative to the inertial frame J with a constant 
angular velocity co. Using Cartesian axes the coordinate transformation 
from J to R takes the form 

x = x'cos cot + y'sincot' 

y = - x ' s i n c o t '  + y'cos cot' 

g = Z', t = l '  (3) 

Differentiating and substituting the result in the Minkowski line element in 
J, one finds the line element in R: 

ds2 = _ [1_  co2(x 2 + y2)] dt 2 + 2 c o d t d x - 2 ~ d t d y  

+ dx 2 + @2 + dz 2 (4) 

(Here and in the following the velocity of light has been put equal to 1.) 
This gives the following nonvanishing components of the metrical tensor: 

g o o = - - l + c o 2 ( x 2  + y 2 ) ,  g l l = g 2 2 = g 3 3 = l  

go1 = gxo = toy, g o 2  = g 2 0  = - w x  (5) 

Since the determinant g = - 1 ,  the electromagnetic field equations (1) and 
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(2) are unaltered by the transformation (3). But the connection between the 
covariant and contravariant components of the field tensor depends on the 
metrical tensor, 

If we define 

F ~'~ = gZ~g~ (6) 

F23 = Bx, r3, = ey ,  5 2  = Bz 

Fo, = E~, Fo2 = Ey, Fo3 = E~ (7) 

it follows from Eq. (1) that Maxwell's source-free equations have the same 
form in every reference frame, 

v . B = 0  (8) 

V x E +  gB/Ot  = 0  (9) 

From Eqs. (2), (5), and (7) one finds that in R the source equations (2) have 
the 3-vector form, 

v . E  = (p + 0 ) / %  (10) 

V •  3 E / g t  = / % ( i + 0  (11) 

where p and j are the charge and current densities, respectively, and where 

o = V.(vXB) = 2~o-B-v-(V XB) (12) 

i = v x ( V  X E ) + V  X [ v X ( E - v X B ) ]  (13) 

with 

v = t~ • r (14) 

Equations (8)-(14) are Schiff's equations. In the stationary case (9), (10), 
and (11) reduce to 

~ 7 •  

v .  ( E -  v x B) = P/~o 

V X[B-vX(E-vXB)]  =PoJ 

(15) 

(16) 

(17) 
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If also all charges are at rest in R, Eq. (17) takes the form 

V X [ B - v X ( E - v X B ) ]  = 0  (18) 

In addition to the field equations we shall need the equation of motion in R 
for a charge q in an electromagnetic field. The covariant form of this 
equation is 

du ~ 
d-T + F~t~u"ut~ = ( q / m )  F,~u ~ (19) 

Here u ~ are the components of the four-velocity of the charge, m is its rest 
mass, dT the proper-time interval as measured on a standard clock following 
the particle, and F~t ~ the Christoffel symbols. 

Bow (1972) has deduced the three-vector form of this equation in R for 
the general case with a moving charge. We shall only need the equation as 
applied to a charge at rest in R. In this case it takes form 

ymt~ Xv = q [ E - ( v - E ) v ] ,  y = ( 1 -  v2) - ' /2  (20) 

The solution of the equations (8), (15), (16), (18), and (20) gives the 
electromagnetic field and charge distribution in R. The transformation to 
the inertial rest frame of R's axis is given by Modesitt (1970), 

p'=p, j ' = j + p v  

B'=B, E ' =  E - v X B  (21) 

3. APPLICATION TO A ROTATING CONDUCTOR 

An isolated, charged, massive, cylindrical conductor at rest in R is 
considered. The charge distribution and electromagnetic field of the conduc- 
tor will be found when the conduction electrons have come to rest relative 
to the conductor. 

From the cylindrical symmetry of the problem it follows that the only 
nonvanishing components of E and B in cylindrical coordinates are 

E ( r ) = E r ( r ) ,  B ( r ) = B ~ ( r )  (22) 

Thus v .1_ E, so that the last term in equation (20) vanishes, which leads to 

~,m~0 X (o~ Xr) = - eE (23) 

This immediately gives the electrical field strength in the conductor as 
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measured in R: 

where 

E = y r ~ B  m (24) 

B m = mo~/e (25) 

For ~0 = 1 0  3 S -1 we get B m = 5.7• -t~ tesla. 
Equations (8) and (15) are satisfied by every field of the form given in 

Eq. (22). Since v-B = 0, the vector identity 

gives 

a• (bxc) = (a-c)b- (a.b)c (26) 

v X (v X B) = - v2B (27) 

Equation (18) then reduces to 

v x [ ( 1 - o 2 ) ~ - v x E ]  = 0  

which, together with Eq. (22) gives 

d [ ( 1 - v 2 ) B - r ~ o E ]  = 0  

Substitution from Eq. (24) and integration gives 

B = y ~ ( S o  - r~  

(28) 

(29) 

(30) 

where J is the current enclosed by the integration path. 
Equation (31) is now applied to a rectangular path with one side along 

the axis of the conductor and one parallel to the axis infinitely far from it. 
The path is midway between the ends of the conductor, and its side along 

(31) ~ [ S - v x ( E - v •  = ~0: 

where B 0 = B(0). 
Applying Stoke's theorem to Eq. (17) gives the generalized form of 

Ampere's law in integral form, valid for Schiff's formulation of the electro- 
magnetic field equations in a rotating reference frame, 
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the axis is much shorter than the conductor. Then v x E and v x (v x B)= 
- -  o2B are both directed parallel to the axis at the path, so that the integral 
along its radial sides vanishes. At infinity E = B = 0. Then Eq. (31) gives 

B~ =/~~ = Pt~ 21r (32) 

where 7~ is the net charge per unit length of the conductor. 
Substituting Eqs. (24) and (30) into Eq. (16), and using that 

l d  
V ' a (  r ) = r -~r ( rar)  

in cylindrical coordinates, gives 

P = Y4[Po + e o ( 3 y - 2 -  y -')~oBm] 

where 

Po = 2~~ (B,,, - Bo), Bo =/~oX~~ 

(33) 

(34) 

# ( E - v  XB) 'ds  = Q / e  o (36) 

where Q is the net charge enclosed by the integration surface. One finds that 
there is only a radial electrical field 

E o u t s i d  e = ~ k / 2  rre 0 r (37) 

The surface charge per unit length of the conductor, )%, is found from the 
boundary condition for the electric field on the surface 

a(V~- v x B) = O/eo = Xo/2~Re0 (38) 

where R is the radius of the conductor. Substituting from Eqs. (24), (30), 
(32), and (37) we get 

Xo = ~/2( R)[ X - v2( R )X,.] (39) 

where 

~,,, = 2rrBr,,/l~oO~ = 2rrm/ l~o  e = 2.8 • 10 - 5 C / m  (40) 

The electromagnetic field outside the conductor, neglecting end effects, is 
found from Amprre's law in the form (31) and the generalized Gauss' law 

(35) 
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is the surface charge per unit.length corresponding to B m. We see that ~'m 
may be identified as 

•,, = e / 2 r  o (41) 

where 

r o = e2/47reorn (42) 

is the classical electron radius. The charge density, current density and 
electromagnetic field, as measured in the inertial rest frame, J, of the axis of 
the conductor, is found from the transformation equations (21). It follows 
that the charge density and the magnetic field are given by Eqs. (16) and 
(14), respectively. The current density is 

j '  = lov 

while the electrical field strength is 

E ' =  y2r~o( YBm - no) 

(43) 

(44) 

From Eqs. (25) and (32) is seen that B m is connected with the inertia of the 
conduction electrons, and B 0 with the net charge of the conductor. Equa- 
tions (30) and (44) show that the electromagnetic field in the conductor has 
one component due to its net charge and one due to the inertia of the 
electrons. 

To estimate the magnitude of these two components we note that un- 
der normal laboratory conditions air ionizes in an electrical field of the 
order 106 V/m.  From Eq. (37) we find that for a cylinder with a radius 
R = 10 -1 m this corresponds to a value of ~, of the order 10-  5 C / m .  This is 
the maximum charge per unit length the cylinder will keep without leakage. 
If we choose ~0 =103 s -1 we find a corresponding value of B 0 of the order 
10-  9 tesla, which is of the order of B m calculated earlier under the same 
conditions. Hence we see that the contribution to E and B in the conductor, 
from its largest possible net charge and from the inertia of the conduction 
electrons, are of the same order under laboratory conditions. The potential 
difference between the axis and the surface of the cylinder is given by 

For R~0 << 1 we find 

U =  foRE'dr (45) 

U -  = - (/~0/4~r)(h - hm)R2~o 2 (46) 
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With k = 1 0 - 5  C/m, R=10-1,  and ~=10  3 s-l, this gives U = l . 8 •  
10 -8 V. 

4. CONCLUSION 

The electromagnetic field and charge distribution in a charged, rotat- 
ing, cylindrical conductor have been calculated in the rotating rest frame of 
the conductor, by means of Schiff's generalization of Maxwell's equations. 
Compared to the ordinary Maxwell equations, valid in inertial frames, 
Schiff's source equations have additional terms. Applied to a charged 
conductor at rest in a rotating reference frame these terms imply that a 
nonvanishing spatial charge distribution will exist within the conductor. As 
described in the inertial rest frame of the axis of the conductor, the spatial 
charge distribution in the conductor is a result of the centrifugal effect on 
the conduction electrons and the magnetic field caused by the motion of the 
charge (Gron and Voyenli, 1983). 

REFERENCES 

Anderson, J. L., and Ryon, J. W. (1969). Physical Review, ;[81, 1765. 
Bow, Y. F. (1972). American Journal of Physics, 40, 252. 
Corum, J. F. (1980). Journal of Mathematical Physics, 21, 2360. 
Gron, 10., and Voyenli, K. (1983). European Journal of Physics, 3, 210. 
Heer, C. V. (1964). Physical Review, 134, A799. 
Irvine, W. M. (1964). Physica, 30, 1160. 
Ise, J., and Uretsky, J. L. (1958). American Journal of Physics, 26, 431. 
Landau, L. D., and Lifshitz, E. M. (1975). The Classical Theory of Fields p. 257. Pergamon, 

New York. 
Schiff, L. I. (1939). Proceedings of the National Academy of Sciences, 25, 391. 
Mo, T. C. (1970). Journal of Mathematical Physics, 11, 2589. 
Modesitt, G. E. (1970). American Journal of Physics, 38, 1487. 
Post, E. J. (1967). Reviews of Modern Physics, 39, 475. 
Schiff, L. J. (1939). Proceedings of the National Academy of Sciences, 25, 391. 
Volkov, A. M., and Kiselev, V. A. (1970). Soviet Physics J. E.T.P., 30, 733. 
Webster, D. L. (1963). American Journal of Physics, 31, 590. 
Webster, D. L., and Whitten, (1973). Royal Society of Astrophysics and Space Science, 24, 323. 
Yildiz, A., and Tang, C. H. (1966). Physical Review, 146, 947. 


